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DIFFUSION OF DISINTEGRATION PRODUCTS OF 

INERT GASES IN CYLINDRICAL TUBES? 
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(Received 12 August 1968 and in revisedform 24 October 1968) 

Ah&a&-Presented herein is the problem of steady-state diffusion of the decaying products resulting 
from the disintegration of an inert gas flowing through a cylindrical tube. The disintegration products of 
the gas diffuse radially to the walls of the tube where they are absorbed. Three velocity distributions 
(uniform-, parabolic-, and Langhaar-) are considered and the respective solutions for the concentration 
distributions are obtained. Also presented are the F(p) values for the respective velocity distributions. 
These values are needed in the determination of the dinusion coefficients of the disintegration products. 
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NOMENCLATURE 

defined by equation (10) ; 
given below equation (14) ; 
mass concentration of the disintegra- 
tion product ; 
coefficient of diffusion ; 
defined by equation (5); 
rate of formation of disintegration 
product per unit volume of gas ; 
inner radius of the tube ; 
Reynolds number, defined as W,/v ; 
Schmidt number, defined as v/D ; 
given below equation (7); 
axial and radial coordinates, res- 
pectively ; 
eigenvalues of equation (9) ; 
axial and radial velocity components, 
respectively ; 
mean flow velocity; 
positive roots of Jo(a) = 0; 
known function of /J in Langhaar- 
velocity distribution ; 
defined as r/r,, ; 
defined as Dx/Vri ; 
kinematic viscosity; 

fThis work was done, in part, at the request of the 
Health and Safety Laboratory, United States Atomic Energy 
Commission (1968). 

dimensionless velocity distributions 
(u.JV), with subscripts u, p and L for 
uniform-, parabolic- and Langhaar- 
profiles respectively ; 
defined in equations (8) and (9); 
dimensionless concentration distri- 
bution, defined as Dcfqri. 

STATEMENT AND FORMULATION 
OF PROBLEM 

THE EQUATION (1) describing the steady-state 
mass diffusion of a constituent in a generating 
but nonreacting binary gas mixture flowing 
through a cylindrical tube, assuming azimuthal 
symmetry and constant coefficient of diffusion, 
can be written as 

The problem of diffusion of the decaying pro- 
ducts of an inert gas flowing under the influence 
of forced convection, such as the diffusion of 
solid radium-d radioelements resulting from 
the disintegration of radon gas in its flight 

471 



472 C. W. TAN 

through a cylindrical tube, is mathematically 
depicted by such an equation [l]. In this situa- 
tion, rX and v, are, respectively, the axial and 
radial velocity components of the gas ; c the 
mass concentration of the radioelements; D 
their coefficient of diffusion, and (1 the rate of 
formation of these elements per unit volume of 
the flowing gas. + 

For an isothermal system undergoing simul- 
taneous moments and mass diffusion pro- 
cesses, the Schmidt number SC is a significant 
parameter since it expresses the relative speeds 
within the flow system for the transport of mass 
and that of momentum by the carriers. For high 
Schmidt numbers, SC > 1, assumption of a 
fully developed parabolic-velocity profile does 
not lead to significant error because the velocity 
profile is established much more rapidly than 
the concentration profile. On the other hand, 
when the concentration profile outgrows the 
velocity profile at the inlet region (such is the 
case for SC < l), solutions based on the uniform- 
velocity profile provide at least a first-order 
approximation to the actual transport pheno- 
mena. For SC z 1, however, both the velocity 
and concentration profiles develop at a similar 
rate along the tube, and neither the assumption 
of a parabolic- nor uniform-velocity profile is 
satisfactory. Instead, a developing velocity in 
the form of u, and v, = f[(x/r,)/Re, r/r01 should 
be employed, which changes continuously with- 
in the transition length of the tube from the 
uniform-velocity at the tube inlet to the para- 
bolic-velocity far downstream from the entrance. 
Among the various developing velocity distri- 
butions available, such as the works by Schiller 
[2], Boussinesq [Z], Langhaar [3], Campbell 
and Slattery [4], Hornbeck [S], Christiansen 
and Lemmon [6], and Vrentas, Duda and 
Bargeron [7], the velocity given by Langhaar 
will be used in this analysis since it is given in a 

t The transit time within the tube is sufficiently short so 
that decay of radium-A is negligible. For example, a typical 
tube of 500 cc might be operated at a flow rate of 10 1./m. 
The transit time would then be 3 set, compared to the 3.05 
min half-life of radium-4 [13]. 

closed analytical form more easily employed in 
the analysis of the diffusion problem. It should 
be noted, however, that the choice of this 
velocity profile limits it only to high Reynolds 
number flow. 

For both the uniform- and parabolic-velocity 
distributions, the radial velocity component is 
zero, thus eliminating the term involving V, in 
equation (1). In the transition length of the tube, 
however, this component is of considerable 
importance, but its significance diminishes 
rapidly away from the entrance. Since equation 
(1) is mathematically analogous to that of heat 
transfer in a cylindrical tube,? the analyses of 
Kays [S] and Lemmon [P] may be readily 
extended to the present diffusion problem. Thus 
for p > 004, which is the range of study in 
[13, 141, the effect of the v, term is quite small 
compared to the other term on the left-hand 
side of equation (1) and will be neglected in this 
analysis:$ 

For the typical transport problem, it may be 
assumed further that the diffusion in the direc- 
tion of flow is negligible, and thus the a2c/ax2 
term is e1iminated.t The criteria for which this 
term may be neglected, as in the case of con- 
vective heat transfer, have been established by 
Singh [lo]. For gases with higher diffusivities, 
however, this assumption becomes less satis- 
factory. 

Assuming that 4 is constant, the final equation 
to be considered, in non-dimensional para- 
meters, is thus 

t The problem of diffusion undertaken here differs from 
the work done in convective heat transfer [8-121 only in 
the boundary conditions. The differential equation of 
diffusion and the boundary conditions (c = 0 at x = 0 and 
at I = rO) do not describe a trivial system only because of 
the presence of the constant source term in the governing 
equation. 

$ The inclusion of axial diffusion and the term involving 
V, in equation (1) is currently being studied by this author. 
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where r. is the inner radius of the 
the mean flow velocity. Equation 

tube and I/ 
(2) is to be 

solved analytically whenever feasible (otherwise 
numerically) with three velocity profiles, namely 
a uniform-velocity A,, a parabolic-velocity A, 
and a Langhaar-velocity profile ,4L [3, 81, or 

A” = 1, A, = 2(1 - $), 

/1 = IO(Y) - lo(Yrl) 

1 

(3) 
L 

I,(Y) ’ 

where Y, a known function of p, is tabulated in 
Langhaar’s paper. 

The boundary conditions associated with 
this particular diffusion problem are based on 
the following observation and experimental 
technique. Since the radioelements are com- 
pletely anihilated at the walls, t c = 0 at r = ro. 
Furthermore, if perfect filtration to remove any 
particulate matter is accomplished at the tube 
inlet, for example with a high efficiency inlet 
filter used in [13], then c = 0 at x = 0. The 
pertinent boundary conditions to equation (2) 
therefore, are 

‘y(l, CL) = 0, Y(Q0) = 0. (4) 

Defining a new parameter F as the ratio of 
the total particle flux over a cross section at 
distance x from the tube inlet to the rate of 
formation of the radioelements in the same 
element of the tube, we have 

t The radium-A particle in colliding with the tube walls 
gives off an u-particle and decays into a radium-B particle 
which has a half-life of about 26.8 min. The chain of activity 
is shown from radon gas to lead as 

3.825 days 3.05 m 26.8 m _ 1o-4 set 
R, - R,A ----*RUB -----rR,C-- 

5.5 c7 6.0 ci e 

19.8 m 
KC’- Ph. 

7.68 c( 

ro 1 

J v,c27rr dr 

F(P) = ’ 
2 

nrixq 
= cl A(r, CL) Vrl, P) rl dq. 

5 
0 

(5) 
The F(p) values are needed in the experimental 
determination of the coefficient of diffusion, 
such as the two-filter method described in [13]. 
It can readily be shown that F(0) = 1 for any 
A = A(q) and that 

~0) = (W6) cbt 

where 

cb = y v,cr drJy v,r dr 
0 0 

is the local bulk concentration. It is also 
apparent that cb is dependent on the velocity 
distribution over the tube cross-section. For 
the uniform velocity, cb is just the average 
concentration at any cross-section. 

ASYMPTOTIC SOLUTIONS FOR LARGE ,D 

It is first noted that when the concentration 
distribution is fully established, &/a~ -+ 0, equa- 
tion (2) yields an asymptotic solution of Y = 
(1 - $)/4, irrespective of the velocity distribu- 
tions involved. It is based on this asymptotic 
result that solution of the form of equation (8) is 
sought for the parabolic-velocity profile. 

The asymptotic values of F(p), however, 
depend on the associated velocity distributions. 
It can easily be shown that for the uniform- 
velocity distribution, i.e. A = A,, the asymptotic 
values of F(p) + 1/(8~); and f6r the parabolic- 
velocity A = Ap, F(p) + 1/(6~). As AL -+ Ap for 
large p, it becomes apparent that with the 
Langhaar-velocity distribution, the F(p) values 
approach those given for the parabolic-velocity 
case. 

SOLUTIONS FOR UNIFORM-VELOCITY 
PROFILE 

With a uniform-velocity profile, A = A, = 1, 
the solution to equation (2), subject to the 
boundary conditions (4), can be found in a 
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straightforward manner by Laplace transforms 
to be: 

WL /4 = iu - v2) 

where &a., M = 1,2,3,. . _ , are the positive roots 
of J,(a) = 0. 

The parameter F Is then given by: 

m 

Fb4 = ; c S,[ 1 - exp( - a&)1, (7) 
n= 1 

where S,, = 4,,+$. For small values of p, exp 

(-rr,$) = mz, (- l)m(~~~)~/~!, it is then appa- 

rent that:: F(p) = z 4/a(i -+ 1. For large p, 

equation (Y) gives an”Zymptotic expression of 
F(p) = l/(811), as expected. The lower values of a,” 
and S, and the F(p) values are listed respectively 
in Tables 1 and 2. The functions y/ and F of 
equations (6) and (7) are shown respectively in 
Figs. 1 and 2. 

SOLUTIONS FOR PARABOLIC-VELOICITY 
PROBILE 

For the fully developed Poiseuille pipe flow, 
A = Ar, = 2(1 - q2), we seek solution to equa- 
tion (2) of the following form : 

%s, 14 = it1 - v2) + 1 @,fd exp(- x,P/~). 
n 

(8) 

Substitution of the above into equation (2) 
yields 

(?@A)’ + X,ll(l - rZ) @, = 0, (9) 

where the prime designates derivative with 
respect to q. Equation (9) is the familiar Sturm- 
Liouville equation, the solutions of which form 
a complete orthogonal set with real eigenvalues 
X,. Realizing that @, is finite at r] = 0, and 
symmetrical about the p-axis, they may be 
found by expanding @, in a power series [ 1 l] 

(10) 

Substitution into equation (9) yields the follow- 
ing recursion formula for the coefficients 

Table 1. Lower eigenualues and associated coeficientsfor equations (7), (13) and (14) 

n 2 
cc, ‘% X” b n,O 3” 

--.~-- ~_ ._ _~_~_ _._-._ 
1 5783186 0.119598 7.3135869 - 0.286464 0.1589154 
2 30.471262 OGO4308 44.60946 1 0.049572 oaI59974 
3 74.887007 0~000713 113.92103 -0.019679 0.0010864 
4 139.040284 OGtIO207 21524054 0.010483 0~0003401 
5 222.932304 OGXKI~O 348.56412 - 0~006008 0~0001304 
6 326563353 oQOOO37 513.8899 0.000118 OOOWO18 
7 449,933529 0~000020 
8 593.042870 0G#O11 
9 755.891395 0.~7 

10 938.479114 0.~ 
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Table 2. F(p) values 

Uniform- Parabolic- 
it 

Langhaar- 
velocity vekity velocity 

0001 0.9513 0.9020 
0.01 0.8545 0.7894 
0.02 0.7974 0.7360 
0*03 0.7548 0.6990 
004 0.7197 0.6697 
0.05 0.6895 06451 
0‘06 0.6627 0.6238 
0.07 0.6386 0.6048 
0.08 0.6165 0.5876 
0.09 0.5961 0.5719 
0.10 0.5772 0.5574 
0.11 0.5595 0.5439 
0.12 0.5428 0.5312 
0.13 05271 0.5192 
0.14 O-5122 0.5079 
0.15 O-498 1 0.4972 
0.16 0.4847 0.4870 
0.17 0.4719 0.4772 
0.18 0.4597 0.4679 
0.19 04480 0.4589 
0.20 0.4368 0.4503 
0.21 0,426 1 04420 
0.22 0.4158 0.4339 
0.23 04059 0.4262 
0.24 0.3964 0.4187 
0325 0.3873 0.4114 
0.26 0.3785 04044 
027 0.3700 0.3976 
0,28 0.3618 0.3909 
0.29 0.3539 0.3845 
0.30 O-3463 O-3782 
0.32 0.3319 0.3662 
0.34 0.3184 0.3548 
0.36 0.3058 0.3440 
0.38 0.2940 0.3338 
0.40 0.2829 0.3241 
0.50 0.2367 0.2818 
060 0.2021 0.2479 
0.70 0.1756 0.2202 
0.80 0.1548 0.1974 
0.90 0.1382 0.1783 
1 .oo 0.1246 0.1623 
I.50 0.0833 0~1105 
2.00 0@625 0.0832 
250 0.0500 0.0666 
3.00 0.0417 0.0555 
350 0.0357 0.0476 
4.00 0.0312 0.0416 
4.50 0.0278 0.0370 
5.00 0.0250 0.0333 

0.9378 
0.8342 
0.7777 
0.7375 
0.7055 
0.6782 
0.6542 
0.6331 
0.6143 
0.5965 
0.5800 
O-5652 
0.5511 
0,5378 
0.5253 
0.5134 
0.5021 
0.4914 
0.4810 
0.4712 
04618 
0.4528 
04441 
0.4357 
0.4276 
0.4198 
0.4123 
04050 
0.3979 
0.3910 
0.3844 
0.3718 
0.3600 

-l 

- Longhaar-velocity 

--- Parabolic-velocity 

~---- Uniform-velocity 

0 0 1 0.2 0.3 0.4 O-5 0.6 0,7 0.8 0 9 I-O 

1 

FIG. 1. Development of concentration profiles for various 
veloicity distributions. 

with 

b n,l = ~b.o, -- 

b, o, etc. 

The eigenvalues X, are found by invoking 
the boundary condition of Y(l, p) = 0. It 
amounts to 

(12) 

The values of b,, o can then be evaluated from 
the other boundary condition Y(q, 0) = 0 to be 

m * 

HZ c (bra, n&n, 0) @a, jibn, 0) 
4l,o = -- 

2\/((m+ l)(m+2)(m+3f (m+j+ l)(m+j+2) * > 
(13) 

m=O m=O j=O 
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FIG. 2. F(p) for various velocity distributions. 

, 

With the complete orthogonal functions @. 
determined, F@) can thus be determined : 

w = ‘, 
c 

&Cl - exp(--W/2)1, (14) 

n 

where 

B, = - y 2b,,&n + 1) (m + 2). 
l&O 

With the aid of a digital computer, the lower 
modes of X,, b,,e, and B, can be computed. 
They are tabulated in Table 1. The correspond- 
ing F(p) values are shown in Fig 2. For large p(, 
the series solution technique is adequate, yielding 
lim F(U) = 1/(6~), as expected. Asp + 0, however, 
C-m 
this technique based on the six lower eigenvalues 
tabulated in Table 1, yields F(0) = 0.841 instead 

of the theoretical value of F(0) = 1. The principal 
drawback of this technique for small p is the 
difficulty in calculating directly the eigen- 
functions Qn corresponding to the higher modes 
of the Sturm-Liouville equation. For these 
modes, the b,, ))I grow very large before diminish- 
ing, and the summing of the series to zero, 
equation (12), involves the difference of large 
numbers with the result that if accuracy is 
desired many digits must be carried in the 
computation. Furthermore, as p + 0, the in- 
finite series converges rather slowly necessitating 
a large number of terms. 

The above difficulties may be circumvented 
by an iterative method described in [12, 151. 
Instead, a numerical solution to equation (2) is 
sought. The non-dimensional concentration 
distribution 4Y is plotted against q and P in 
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Fig. 1 and the numerically computed F-values 
shown in Fig. 2 and Table 2. For the range of 
our present interest, p > O-04, the analytical and 
numerical solutions are practically identical, to 
at least the second decimal place. 

SOLUTIONS FOR LANGHAAR-VELOCITY 
PROFILE 

The partial differential equation (2) can be 
expressed in finite difference form, for the 
interior points of the tube, as follows : 

Y as#+As =fb +fiy~+Aq,p +fiy,,, 

+f3yv-Aq,p' (15) 

where 

fo = $9 

1Apl 1 

When the node1 point (9, ,u) is at the origin, 
q = 0, we have 

AP 4K,, - %,) 
!P a,~+& -- l+ = /1(0, P) 

i Zj.2 . 
1 

Ap and Aq are the arbitrarily chosen incre- 
ments in the axial and radial directions, res- 
pectively. For the present numerical solutions 
by was specified at & and A,u at OHlOl. As was 
observed in [S], with An chosen, the choice of 
A,B is somewhat restricted, because if A,u is 
chosen such that fi becomes negative the 
solution will not converge. The f’s in equation 
(15) are functions of the velocity _4 and q, and it 
is here that the L~ghaar-velocity n = A, = 
[1,(y) - ~~(~~)]/~~(y) is introduced. Since y is 
tabulated in [3] in terms of 6, where c = J&C, a 
value of SC = 1 is assumed for a one-to-one 

correspondence between (T and CL. Other values 
of SC can be used with equal ease. Numerical 
calculations are carried out to p = 0.34, at and 
before which the concentration profile becomes 
sufficiently near fully developed. The functions 
Y and F for this case are included in Figs. 1 and 2, 
and the latter listed in Table 2. 

RESULTS AND CONCLUSIONS 

The development along the tube length of the 
non-dimensional concentration profiles for the 
three velocity distributions is shown in Fig. 1. 
It is seen that as the value of p increases, the 
concentration profile based upon the Langhaar- 
velocity distribution approaches that of the 
parabolic-velocity distribution. As p + co, all 
three velocity distributions give the same asymp- 
totic expression of Y = (1 - $)/4 as they 
should. 

Figure 2 shows the F(p) values for the three 
velocity distributions considered. The analytical 
solution based on the six eigenvalues listed in 
Table 1 for the parabolic-velocity distribution 
is included in the figure together with the 
corresponding numerical solution for com- 
parison. The Langhaarvelocity solution runs 
close to the uniform-velocity solution for small 
p and merges asymptotically with the parabolic- 
velocity solution as p becomes large. 

Although the present analysis is applicable 
for p > 0.04, values of F(p) are extended below 
this range to display the trend extrapolated from 
the present theory. It is then observed that in 
the length of transition the uniform-velocity 
solution provides an upper limit, while the 
parabolic-velocity solution gives a lower limit, 
to the F(p) values. This is as expected since the 
former solution approx~ates the transport 
phenomena within the length of transition 
which would be obtained as the Schmidt 
number approaches zero, while the latter solu- 
tion relates that as the Schmidt number becomes 
very large. The true solution within the length 
of transition for a fluid with Schmidt number 
close to unity, therefore, must lie somewhere 
between these two extreme cases. 



478 C. W. TAN 

Subject to the accuracy of the numerical 4. W. D. CAMPBELL and 3. C. SLAT~.ERY, Flow in the 

technique, the value of F at fl = 0.04 based on entrance of a tube. .I. Bm. Engng, Trans. Am. Sot. 

A, is about 2 per cent higher, while that based Mech. Engrs 85D, 4146 (1963). 

on nP is about 5 per cent lower, than the corres- 
5. R. W. HORNBECK, Laminar flow in entrance region of 

pipe, Appl. Sci. Res. A13, 224-232 (1964). 

ponding value of A, At p = O&23,? the values 6. E. B. CHRISTIANSEN and H. E. LEMMON, Entrance region 

of F based on L$, and nP are about 7 per cent 
flow, A.1.Ch.E. Jf 11, 995-999 (1965). 

7. J. S. VRENTAS, J. L. DUDA and K. G. BARGERON, Effect 
and 2 per cent lower, respectively, than that for of axial diffusion of vorticity on flow development in 

A,. For large ,u, e.g. ~1 > 0.23, the F(p) values circular conduits-Part 1. Numerical solutions. 

based on AL are practically the same as those 
A.I.Ch.E. Jf 12, 837-844 (1966). 

8. W. M. KAYS, Numerical solutions for laminar-flow 
given by J$,, with an error of not more than heat transfer in circular tubes, Trans. Am. Sot. Mech. 

2 per cent. It is thus concluded that for the Engrs 77, 1265-1274 (1955). 

range O-04 < p < 0.23, the values of F(p) based 
9. H. E. LEMMON, Fluid flow and heat transfer in the 

on _4, should be used. whereas for u z=- 0.23. the 
inlet region of tubes. Ph.D. Thesis, Dept. of Chem. 
Ener.. Univ. of Utah (19631. 

G 

parabolic-velocity solution is adequate. 

REFERENCES 

1. V. M. BEREZHNOI and V. V. KIRICHENKO, Theory of 
diffusive deposition of decaying products of inert gases 
in circular and flat channels, Translated from Afomn. 
Energ. 17, 300-302 (1964). 

2. H. SCHLICHTING, B~~~dar.~ Layer Theory, 4th Edn, 
p. 257. McGraw-Hill, New York (1960). 

3. H. L. LANGHAAR, Steady flow in the transition length 
of a straight tube, J. Appf. Mech., Trans Am. Sot. 

Mech. Engrs 64, A55-58 (1942). 
- 

f The value of D = 0.23, where 0 = ~SC, is taken to be 
the length of transition in [5]. 

10. S. 6. SINGH, Heat transfer by laminar Bow in cylindrical 
tube, Appf. Sci. Rex. A7, 325-340 (1958). 

1 I. H. C. BRINKMAN, Heat effects in capillary flow-l. 
Appf. Sci. Rex. AZ, 120-124 (1951). 

12. R. E. LUNDRERG, W. C. Reynolds and W. M. Kays, 
Heat transfer with laminar flow in concentric annuli 
with constant and variable wall temperature with heat 
flux, NASA Rep. No. TN D-1972 (1963). 

13. J. W. THOMAS, Radon determination by the two-filter 

methods, USAEC Rep. No. 68-9 (1968). 
14. J. FONTAM. D. BLANC. N. L. HUERTAS, A. M. MARTY 

and F. NAYME, Measurement of diffusion coefficient 
for ultrafine neutral radioactive particles, presented at 
the Journees d’Electronique de Toulouse. France. 
March 1968. 

15. V. J. BERRY and C. R. DE PRIMA, An iterative method 
for the solution of eigenvalue problems, J. Appf. Phys. 
23, 195-198 (1952). 

R&mkOn prtsente ici ie probl&me de la diffusion en regime permanent des produits d&croissants 
provenant de la disintegration d’un gaz inerte s’CcouIant a travers un tube cyclindrique. Les produits de 
d&integration diffusent radialement vers Ies parois du tube ou ils sont absorb&s. On considttre trois 
distributions de vitesse (uniforme, parabolique et de Langhaar) et ies solutions pour les distributions 
de concentration sont obtenues. On pr&sente aussi les valeurs de F(n) pour les distributions respectives 
de vitesse. Ces valeurs sont nicessaires pour la d&termination des coefficients de diffusion des produits 

de d&integration. 

Zusammenfa~ung-Es wird das Problem der station&en Diffusion von Zerfallsprodukten eines Inert- 
gases behandelt, wobei das Gas in zylindrischen Rohren striimt. Die Zerfallsprodukte des Gases dif- 
fundieren radial zur Rohrwand, wo sie absorbiert werden. 

Drei Geschwindi~eitsverteilungen (gleic~~~ige, parabolische und nach Langhaar) werden bet- 
rachtet und ihre entsprechende~ Ko~entrationsverteilungen ermittelt. Daneben werden such die F(p) 
Werte fur die entsprechenden Geschwindi~eitsverteilungen angegeben. Diese Werte sind zur Bestim- 

mung der Diffusionskoefftienten der Zerfallsprodukte erforderlich. 

AMMOT~MMJI-B CTaTbe paccMaTpHBaeTcH 3aHava CTaHHOHapHOi ~Ii@$yaHH npOayKToB 
panHoaHTHHHor0 paanomearnrr HHepTHoro ra38, TeHymero B HnnMHHpuHecHofi Tpy6e. npO- 
ayH~br pacnafia JH$njry~HHpymT K cTeHHe ~py6bx, me OHH HornomaroTcH. PaccMaTpmaeTcR 
spa pacnpeReneHHH CHOpOCTH (paBHoMepHOe, napa60nHHecHoe R pacnpeEeneHHe JIaHrxaapa) 
II HOJtyHeHbI COOTBeTCTBymmHe ReIHeHHR @Hl paCHpeAeJIeHHH KOHHeHTpaHHltt. np.eJmTaBJIeHbI 
TaKme 3HaYeHHR F(p) &nfI COOTBeTCTBy#~~X PaC~pe~e~eH~~ CKOpOCTM. 8TH 3HaHeHMH 


