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Abstract—Presented herein is the problem of steady-state diffusion of the decaying products resulting
from the disintegration of an inert gas flowing through a cylindrical tube. The disintegration products of
the gas diffuse radially to the walls of the tube where they are absorbed. Three velocity distributions
(uniform-, parabolic-, and Langhaar-) are considered and the respective solutions for the concentration
distributions are obtained. Also presented are the F(u) values for the respective velocity distributions.
These values are needed in the determination of the diffusion coefficients of the disintegration products.

NOMENCLATURE

b, m defined by equation (10);

B,, given below equation (14);

c, mass concentration of the disintegra-
tion product;

D, coefficient of diffusion ;

F(u), defined by equation (5);

4 rate of formation of disintegration
product per unit volume of gas;

o inner radius of the tube;

Re, Reynolds number, defined as Vry/v;

Sc, Schmidt number, defined as v/D;

S, given below equation (7);

x,r, axial and radial coordinates, res-
pectively ;

X, eigenvalues of equation (9);

v,, U,, axial and radial velocity components,
respectively;

Vv, mean flow velocity ;

%y positive roots of Jo(x) = 0;

7, known function of u in Langhaar-
velocity distribution;

n, defined as r/ry;

U, defined as Dx/Vr3;

v, kinematic viscosity ;

+This work was done, in part, at the request of the
Health and Safety Laboratory, United States Atomic Energy
Commission (1968).

A, dimensionless velocity distributions
(v,/V), with subscripts u, p and L for
uniform-, parabolic- and Langhaar-
profiles respectively;

P, defined in equations (8) and (9);

Y, dimensionless concentration distri-

bution, defined as Dc/qr3.

STATEMENT AND FORMULATION
OF PROBLEM
THE EQUATION (1) describing the steady-state
mass diffusion of a constituent in a generating
but nonreacting binary gas mixture flowing
through a cylindrical tube, assuming azimuthal
symmetry and constant coefficient of diffusion,
10 N r?zc:l N
ax2| T

can be written as
[ (
ror\ or
1)

The problem of diffusion of the decaying pro-
ducts of an inert gas flowing under the influence
of forced convection, such as the diffusion of
solid radium-A4 radioelements resulting from
the disintegration of radon gas in its flight
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through a cylindrical tube, is mathematically
depicted by such an equation [1]. In this situa-
tion, v, and v, are, respectively, the axial and
radial velocity components of the gas; ¢ the
mass concentration of the radioelements; D
their coefficient of diffusion, and g the rate of
formation of these elements per unit volume of
the flowing gas.t

For an isothermal system undergoing simul-
taneous momentum and mass diffusion pro-
cesses, the Schmidt number Sc is a significant
parameter since it expresses the relative speeds
within the flow system for the transport of mass
and that of momentum by the carriers. For high
Schmidt numbers, Sc > 1, assumption of a
fully developed parabolic-velocity profile does
not lead to significant error because the velocity
profile is established much more rapidly than
the concentration profile. On the other hand,
when the concentration profile outgrows the
velocity profile at the inlet region (such is the
case for Sc¢ < 1), solutions based on the uniform-
velocity profile provide at least a first-order
approximation to the actual transport pheno-
mena. For Sc &~ 1, however, both the velocity
and concentration profiles develop at a similar
rate along the tube, and neither the assumption
of a parabolic- nor uniform-velocity profile is
satisfactory. Instead, a developing velocity in
the form of v, and v, = f[(x/ro)/Re, r/ro] should
be employed, which changes continuously with-
in the transition length of the tube from the
uniform-velocity at the tube inlet to the para-
bolic-velocity far downstream from the entrance.
Among the various developing velocity distri-
butions available, such as the works by Schiller
[2], Boussinesq [2], Langhaar [3], Campbell
and Slattery [4], Hornbeck [5], Christiansen
and Lemmon {[6], and Vrentas, Duda and
Bargeron [7], the velocity given by Langhaar
will be used in this analysis since it is given in a

+ The transit time within the tube is sufficiently short so
that decay of radium-4 is negligible. For example, a typical
tube of 500 cc might be operated at a flow rate of 10 1/m.
The transit time would then be 3 sec, compared to the 3-05
min half-life of radium-4 [13].
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closed analytical form more easily employed in
the analysis of the diffusion problem. It should
be noted, however, that the choice of this
velocity profile limits it only to high Reynolds
number flow.

For both the uniform- and parabolic-velocity
distributions, the radial velocity component is
zero, thus eliminating the term involving v, in
equation (1). In the transition length of the tube,
however, this component is of considerable
importance, but its significance diminishes.
rapidly away from the entrance. Since equation
(1) is mathematically analogous to that of heat
transfer in a cylindrical tube.? the analyses of
Kays [8] and Lemmon [9] may be readily
extended to the present diffusion problem. Thus
for u > 004, which is the range of study in
[13, 14], the effect of the v, term is quite small
compared to the other term on the left-hand
side of equation (1) and will be neglected in this
analysis. ]

For the typical transport problem, it may be
assumed further that the diffusion in the direc-
tion of flow is negligible, and thus the 8%c/dx2
term is eliminated.t The criteria for which this
term may be neglected, as in the case of con-
vective heat transfer, have been established by
Singh [10]. For gases with higher diffusivities,
however, this assumption becomes less satis-
factory.

Assuming that g is constant, the final equation
to be considered, in non-dimensional para-
meters, is thus

18 6‘1’) oY
Sy - A+ 1 =0,
nén(n on on

+ The problem of diffusion undertaken here differs from
the work done in convective heat transfer [8-12] only in
the boundary conditions. The differential equation of
diffusion and the boundary conditions {¢ = 0 at x = 0 and
at r = ro} do not describe a trivial system only because of
the presence of the constant source term in the governing
equation.

1 The inclusion of axial diffusion and the term involving
v, in equation (1) is currently being studied by this author.
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with
D
=0 A=
qarg |4
_r _ Dx
'l - 7‘0’ ﬂ - Vr%’

where r, is the inner radius of the tube and V
the mean flow velocity. Equation (2) is to be
solved analytically whenever feasible (otherwise
numerically) with three velocity profiles, namely

a uniform-velocity 4,, a parabolic-velocity 4,

and a Langhaar-velocity profile 4, [3, 8], or
Au = 13 Ap = 2(1 - ’12)’
A = Io(y) — Lo(ym) 3)
L — 7 7 /N
1,(7)

where 7, a known function of y, is tabulated in
Langhaar’s paper.

The boundary conditions associated with
this particular diffusion problem are based on
the following observation and experimental
technique. Since the radioclements are com-
pletely anihilated at the walls,fc =0atr = r,.
Furthermore, if perfect filtration to remove any
particulate matter is accomplished at the tube
inlet, for example with a high efficiency inlet
filter used in [13], then ¢ =0 at x = 0. The
pertinent boundary conditions to equation (2),
therefore, are

Y(L,w=0, ¥@#0)=0 4

Defining a new parameter F as the ratio of
the total particle flux over a cross section at
distance x from the tube inlet to the rate of
formation of the radioelements in the same
element of the tube, we have

+ The radium-4 particle in colliding with the tube walls
gives off an o-particle and decays into a radium-B particle
which has a half-life of about 26-8 min. The chain of activity
is shown from radon gas to lead as

3-825 days 305m 268 m ~107* sec
L ——"SR,A—"SR,B >R,C- >
S5a 60 o 8
198 m
RC—» Pp
7-68 a

ro 1
{ ve2mrdr j‘
0
S —— ! :
Fu) rixg p (n, 1) ¥, Wndn
0
(%)

The F(u) values are needed in the experimental
determination of the coefficient of diffusion,
such as the two-filter method described in [13].
It can readily be shown that F(0) = 1 for any
A = A(n) and that

1F() = (D/qr3) c;,

where
ro ro
¢, = | veerdr/f vrdr
1] 1]

is the local bulk concentration. It is also
apparent that ¢, is dependent on the velocity
distribution over the tube cross-section. For
the uniform velocity, ¢, is just the average
concentration at any cross-section.

ASYMPTOTIC SOLUTIONS FOR LARGE u

It is first noted that when the concentration
distribution is fully established, dc/0p — 0, equa-
tion (2) yields an asymptotic solution of ¥ =
(1 — 5*)/4, irrespective of the velocity distribu-
tions involved. It is based on this asymptotic
result that solution of the form of equation (8) is
sought for the parabolic-velocity profile.

The asymptotic values of F(u), however,
depend on the associated velocity distributions.
It can easily be shown that for the uniform-
velocity distribution, ie. A = A,, the asymptotic
values of F(u) — 1/(8u); and for the parabolic-
velocity A = A, F(u) —» 1/(6p). As 4, — A4, for
large u, it becomes apparent that with the
Langhaar-velocity distribution, the F(u) values
approach those given for the parabolic-velocity
case.

SOLUTIONS FOR UNIFORM-VELOCITY
PROFILE

With a uniform-velocity profile, 4 = A, = 1,
the solution to equation (2), subject to the
boundary conditions (4), can be found in a
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straightforward manner by Laplace transforms
to be:

¥, p) = {1l —n?)

o0

. Z exp(—aiy).

n=1

J()(an’?)
0‘3 J L(an)3

6

where +a,,n = 1,2,3,...,are the positive roots
of Jo(o) = 0.
The parameter F Is then given by:

oG

F(iu) = %z Su[l - exp(—a,z,u)], (7)

n=

where S, =4/a2. For small values of u, exp

(—o2p) = 230 (= 1y™(o2u)™/m!, it is then appa-

rent that lim F(u) = X 4/a? — 1. For large g,
‘L{—-»() n=1

equation (7) gives an asymptotic expression of
F(u) = 1/(8y),asexpected. The lower values of o2
and S, and the F(u) values are listed respectively
in Tables 1 and 2. The functions ¥ and F of
equations (6) and (7) are shown respectively in
Figs. 1 and 2.

W.

TAN

SOLUTIONS FOR PARABOLIC-VELOICITY
PROFILE
For the fully developed Poiseuille pipe flow,
A=A, =21 — n?), we seek solution to equa-
tion (2) of the following form:

P, 1) = H1 ~ n?) + 3 @,(n) exp(~ x,44/2).
@®)

Substitution of the above into equation (2)
yields

©)

where the prime designates derivative with
respect to . Equation (9} is the familiar Sturm-
Liouville equation, the solutions of which form
a complete orthogonal set with real eigenvalues
X,. Realizing that &, is finite at n = 0, and
symmetrical about the up-axis, they may be
found by expanding @, in a power series [11]

n®,) + Xp(1 —n?) @, =0,

)= 3. buar™  (10)

Substitution into equation (9) yields the follow-
ing recursion formula for the coefficients

X,
bn‘m = - W(bn,m—ﬂ - bn,m—-z)s (11)

Table 1. Lower eigenvalues and associated coefficients for equations (7), (13) and (14)

n of Sa X, b, B,
1 5-783186 0-119598 73135869 —0-286464 0-1589154
2 30-471262 0-004308 44-609461 0049572 00059974
3 74-887007 0000713 11392103 —0-019679 00010864
4 139-040284 0-000207 21524054 0-010483 0-0003401
5 222932304 0-000080 348-56412 —0-006008 00001304
6 326-563353 0-000037 513-8899 0-000118 0-0000018
7 449933529 0-000020
8 593042870 0000011
9 755891395 0-000007

10 938479114 0-000004
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Table2. F(u) values

Uniform- Parabolic- Langhaar-
B velocity velocity velocity

0-001 09513 09020 09378
001 0-8545 0-7894 0-8342
002 0-7974 0-7360 07777
003 0-7548 06990 07375
0-04 07197 0-6697 0-7055
0-05 0-6895 0-6451 06782
006 06627 0-6238 0-6542
007 0-6386 0-6048 0-6331
0-08 06163 0-5876 06143
0-09 0-5961 05719 0-5965
010 0-5772 0-5574 0-5800
0-11 0-5595 0-5439 0-5652
012 0-5428 0-5312 0-5511
013 0-5271 0-5192 05378
014 0-5122 05079 0-3253
015 0-4981 04972 0-5134
016 04847 0-4870 0-5021
0-17 04719 04772 04914
018 04597 0-4679 0-4810
019 0-4480 0-4589 04712
020 0-4368 0-4503 04618
021 04261 0-4420 04528
022 04158 0-4339 0-4441
023 04059 04262 0-4357
024 0-3964 0-4187 04276
025 0-3873 04114 0-4198
0-26 0-3785 04044 04123
027 0-3700 03976 0-4050
028 0-3618 0-3909 0-397%
029 0-3539 0-3845 0-3910
030 0-3463 0-3782 0-3844
032 0-3319 0-3662 0-3718
0-34 0-3184 0-3548 0-3600
0-36 0-3058 0-3440

0-38 0-2940 0-3338

0-40 0-2829 0-3241

050 0-2367 0-2818

0-60 02021 02479

070 01756 02202

0-80 0-1548 0-1974

0-90 0-1382 0-1783

1-00 01246 01623

150 0-0833 01105

2:00 00625 0-0832

2:50 00500 0-0666

300 00417 00555

3-50 00357 00476

400 00312 0-0416

4:50 0-0278 0-0370

500 0-0250 00333

o

bn() -

bn,m/bn,()

1-0)
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FiG. 1. Development of concentration profiles for vartous

veloicity distributions.

with
b X

n
w1 = T ubn,Oa

4

X. (X,
bmz: ——-‘n(-—f—' 1) bn!o,etc.

The eigenvalues X, are found by invoking
the boundary condition of ¥(1, ) =0. It

amounts to

S b, .= 0.
m=0

(

12)

The values of b, , can then be evaluated from
the other boundary condition ¥(5,0) = 0 to be

(bn, m/bn, 0) (bn, j/bn, 0)

|
0= T3 Z(m+1)

m=0

(m+2)(m + 3)}/{2 Z(m +ji+Dm+j+2)°
m= i=0

} (13)
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F1G. 2. F(u) for various velocity distributions.

With the complete orthogonal functions @,
determined, F(u) can thus be determined :

1
Flw) = EZB”[I — exp(— X,u/2)], (14)

n

where
B, = — Z 2b, fm + 1)(m + 2).
m=0

With the aid of a digital computer, the lower
modes of X,, b, o, and B, can be computed.
They are tabulated in Table 1. The correspond-
ing F(u) values are shown in Fig. 2. For large p,
the series solution technique is adequate, yielding
lim F(u) = 1/(6p),as expected. As i — 0, however,
B0

this technique based on the six lower eigenvalues
tabulated in Table 1, yields F(0) = 0-841 instead

of the theoretical value of F(0) = 1. The principal
drawback of this technique for small p is the
difficulty in calculating directly the eigen-
functions &, corresponding to the higher modes
of the Sturm-Liouville equation. For these
modes, the b, ,, grow very large before diminish-
ing, and the summing of the series to zero,
equation (12), involves the difference of large
numbers with the result that if accuracy is
desired many digits must be carried in the
computation. Furthermore, as p — 0, the in-
finite series converges rather slowly necessitating
a large number of terms.

The above difficulties may be circumvented
by an iterative method described in [12, 15].
Instead, a numerical solution to equation (2) is
sought. The non-dimensional concentration
distribution 4¥ is plotted against # and g in
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Fig. 1 and the numerically computed F-values
shown in Fig. 2 and Table 2. For the range of
our present interest, u > 0-04, the analytical and
numerical solutions are practically identical, to
at least the second decimal place.

SOLUTIONS FOR LANGHAAR-VELOCITY
PROFILE

The partial differential equation (2) can be
expressed in finite difference form, for the
interior points of the tube, as follows:

an,g+Au =10 +f1Wr,+Aq,u +f2qlq,;u

+f3q'n-a7;,;u (15)
where

Ap
fO - —A—’

1Ap /1 1
fl = -—(— -+ ”"')3

AAnp Ny 2n

M

2 AA—I’]2’

When the nodel point (y, ) is at the origin,

n = 0, we have
AAu 4(‘*{’1,;: - ‘PO,}J)
2T

YIO,;:+A;.; - A(O, Ju)

Au and An are the arbitrarily chosen incre-
ments in the axial and radial directions, res-
pectively. For the present numerical solutions
An was specified at 5 and Ay at 0-0001. As was
observed in [8], with Ay chosen, the choice of
Ap is somewhat restricted, because if Ay is
chosen such that f, becomes negative the
solution will not converge. The f’s in equation
(15) are functions of the velocity A and #, and it
is here that the Langhaar-velocity 4 = 4, =
[1o(y) — Io(ym1/1,(y) is introduced. Since y is
tabulated in [3] in terms of o, where ¢ = uSc, a
value of Sc = 1 is assumed for a one-to-one
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correspondence between ¢ and u. Other values
of S¢ can be used with equal ease. Numerical
calculations are carried out to x4 = 0-34, at and
before which the concentration profile becomes
sufficiently near fully developed. The functions
Y and F for this case are included in Figs. 1 and 2,
and the latter listed in Table 2.

RESULTS AND CONCLUSIONS

The development along the tube length of the
non-dimensional concentration profiles for the
three velocity distributions is shown in Fig. 1.
It is seen that as the value of u increases, the
concentration profile based upon the Langhaar-
velocity distribution approaches that of the
parabolic-velocity distribution. As u — oo, all
three velocity distributions give the same asymp-
totic expression of ¥ = (1 — n?)/4 as they
should.

Figure 2 shows the F(y) values for the three
velocity distributions considered. The analytical
solution based on the six eigenvalues listed in
Table 1 for the parabolic-velocity distribution
is included in the figure together with the
corresponding numerical solution for com-
parison. The Langhaar-velocity solution runs
close to the uniform-velocity solution for small
p and merges asymptotically with the parabolic-
velocity solution as u becomes large.

Although the present analysis is applicable
for u > 0-04, values of F(u) are extended below
this range to display the trend extrapolated from
the present theory. It is then observed that in
the length of transition the uniform-velocity
solution provides an upper limit, while the
parabolic-velocity solution gives a lower limit,
to the F{u) values. This is as expected since the
former solution approximates the transport
phenomena within the length of transition
which would be obtained as the Schmidt
number approaches zero, while the latter solu-
tion relates that as the Schmidt number becomes
very large. The true solution within the length
of transition for a fluid with Schmidt number
close to unity, therefore, must lie somewhere
between these two extreme cases.
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Subject to the accuracy of the numerical
technique, the value of F at p = (0-04 based on
A, is about 2 per cent higher, while that based
on A, is about 5 per cent lower, than the corres-
ponding value of A;. At u = 0-23,% the values
of F based on 4, and A, are about 7 per cent
and 2 per cent lower, respectively, than that for
A;. For large u, e.g. u > 023, the F{y) values
based on A; are practically the same as those
given by A,, with an error of not more than
2 per cent. It is thus concluded that for the
range 0-04 < u < 0:23, the values of F(u) based
on A, should be used, whereas for u > 023, the
parabolic-velocity solution is adequate.
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Résumé—On présente ici le probléme de la diffusion en régime permanent des produits décroissants

provenant de la désintégration d’un gaz inerte s’écoulant 4 travers un tube cyclindrique. Les produits de

désintégration diffusent radialement vers les parois du tube oli ils sont absorbés. On considére trois

distributions de vitesse (uniforme, parabolique et de Langhaar) et les solutions pour les distributions

de concentration sont obtenues. On présente aussi les valeurs de F(p) pour les distributions respectives

de vitesse, Ces valeurs sont nécessaires pour la détermination des coefficients de diffusion des produits
de désintégration.

Zusammenfassung—Es wird das Problem der stationdren Diffusion von Zerfallsprodukten eines Inert-
gases behandelt, wobei das Gas in zylindrischen Rohren strémt. Die Zerfallsprodukte des Gases dif-
fundieren radial zur Rohrwand, wo sie absorbiert werden.

Drei Geschwindigkeitsverteilungen (gleichférmige, parabolische und nach Langhaar) werden bet-
rachtet und ihre entsprechenden Konzentrationsverteilungen ermittelt. Daneben werden auch die Fp)
Werte fiir die entsprechenden Geschwindigkeitsverteilungen angegeben. Diese Werte sind zur Bestim-

mung der Diffusionskoetfizienten der Zerfallsprodukte erforderlich.

Apporamua—B craTbe paccMarpHBaeTcs 3ajada cTanMoHAapHOM RUGYsUM NPOAYHTOB
PATMOAKTHRHOTO Pas3jiOKeHHH HHEPTHOIO rasa, TEKYNiero B muauHapudeckoll Tpybe. Ilpo-
mywTH pacnaza quddyHIupyoT K cTeHke TPYOHI, e OHU MOrIOLIAKTCA. PaccMarpuBaercd
Tpu pacnpefeNeHNs CKOPOCTH (paBHOMepHOe, napabonmyeckoe n pacnpefencrue Jlanrxaapa)
¥ IIOIIYYEHH COOTBETCTBYIOIINME POINSHNA A pacnpeReeHus KonuenTpauuit. IIpencrabnens:
TaiKe sHaueHUA F{p) JA COOTBETCTBYWIIMX PACIpeelieHndl CKOPOCTH. OTH 3HAYeHHS
HeoOXOMUMHL IpH onpepenenuu rospdunnenros nudPysuy TPOAYKTOB PABTOMEHUA.



